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Destruction in Bipartite Quantum Systems
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The description of destruction in bipartite quantum systems in terms of quantum me-
chanics rather than quantum field theory is presented. The maps called supertraces are
defined and used in the definition of the destruction procedure, which can be treated as a
supplement to the von Neumannsders reduction postulate. The presented formalism

is illustrated by several examples that may be helpful in a description of Einstein—
Podolsky—Rosen type experiments and in quantum information theory.
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1. INTRODUCTION

In this paper we describe examples of destruction of bipartite systems on the
level of quantum theory with finite degrees of freedom on a basis of the destruction
procedure introduced by Cabat al. (2002). Questions involving destructions
of this kind of systems arise when Einstein—Podolsky—Rosen type experiments
(Bohm, 1951; Einsteirt al., 1935) are studied. In this type of experiments two
particles are produced in an entangled state and sent to two measurement devicesin
the distance where correlated quantities are measured at the same time. Prediction
of the correlation between the data does not cause any problems in such an ideal
experiment, but if both measurements are not really performed at the same time
we have to take into account that a particle is irreversibly absorbed by a detector
during the measurement. This has nothing in common with an annihilation of a
particle in quantum field theory; therefore, to avoid any confusion we shall use the
word “destruction” to name this kind of processes.

Evidently, if we take into account the destruction we have to consider open
quantum systems. We make the idealization relying on the assumption that the
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destruction process is instantaneous, therefore, its description should not involve
any dynamics.

Destruction of a particle in a detector usually occurs when some quantum
numbers (e.g. spin, position, or momentum) of the particle belong to a specified
subset of spectrum of the corresponding observable. Therefore, we must have a
guantum system and a detector that checks if the particle quantum numbers are
inside a given subset of spectrum. If the answer is “yes,” the particle is destroyed.

The paper is organized as follows. In Section 2 we discuss the space of states
necessary for the description of destruction in bipartite quantum systems. In Sec-
tion 3we define supertraces that are our basic tool in the definition of the destruction
procedure. The Sections 4 and 5 deal with the destruction of two-particle systems
of distinguishable and identical particles, respectively. We illustrate each of these
cases by examples.

2. THE SPACE OF STATES

First, we discuss the space of states necessary for the description of destruction
of two-particle states of particles “a” and “b.” Lét, andH}, be the Hilbert spaces
for the particle “a” and “b,” respectively. The two-particle Hilbert space is the
tensor product, ® Hp. The state of the system is then described by the density
matrix o € End(H, ® Hy). If one introduces i, and Hy, orthonormal bases
{la)} and{|b)}, respectively, then the density matgixcan be written in the form

p =" pavar(|2) ® D)@ ® D)= Y pavavrla)@| @ b)(b]. (1)
aabby aabby
In the case of identical particles the two-particle Hilbert space is the symmetric
or antisymmetric part o, ® Hy, thus the coefficientp,pqry must fulfill the
following symmetry conditions

Pabaly = Pbaaly = Pabba’ = Phabas (2a)
Pabaly = —Pbaaby = —Pabba = Pbaba's (2b)

for symmetric and antisymmetric case, respectively.

But such a description of composite quantum system is not enough if we
consider the measurement by the apparatus that can destroy the state. The reasonis
that the density matrix (1) can describe only the two-particle states of the system,
while after such a measurement we could have also a one-particle state and a
vacuum state.

According to Cabaset al. (2002) we solve this issue introducing the vacuum
vector [vag orthogonal to any vector frorfi{; or Hy, and the one-dimensional
vacuum spacé{® = {c|vag: c € C}, and taking the direct suntg, @ H° and
Hp @ HO instead ofH, andH,, respectively. The corresponding tensor product
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space can be decomposed in the obvious way
(Ha ® H%) ® (Hp ® HO)
=Ha®Hp) @ (Ha@H) @ (H° @ Hp)) & (@ HO),  (3)

whereH, ® H), describes two-particle state®{{ ® H°) & (H° ® Hp) represents
one-particle states, whilg® ® H, is the zero-particle state. In the case of distin-
guishable particles we can take the tefifas® H° or H° ® Hj, as the Hilbert space
of the system after destruction of the particle “b” or “a,” respectively. For identical
particles we have to consider the one-particle Hilbert space as a subspace of the
sum (H ® H°) @ (H° ® H), whereH, = Hp, = H, because we do not know if
the particle “a” or “b” was destroyed.

We point out that dim@ ® H°) @ (H° ® H)) = 2dim(H ® H°), so for
identical particles we must choose an irreducible subspade of t°) & (H° ®
‘H) that corresponds to the space of one-particle states.

3. SUPERTRACES

The partial traces Tr End(Ha, ® Hp) — End(Hp) and Tg: End(Ha ®
Hyp) — End(H,) are widely used in various contexts (see, e.g., Ballentine, 1998;
Peres, 1995), but they cannot be used for the description of the destruction. Thus,
our purpose is to introduce maps that preserve the trace and maf E®dX{;,)
to End(+° ® Ho), End(Ha ® H°) or End(H° ® Hp).

We can define the following linear map (Caketral., 2002).

Definition 1. The tensor produd;upertraceﬁ: End(Ha ® Hp) — End(H° ®
HO) is a linear map such that

Tr(1x) (¢l ® 1Y) ED) = (@1x) (&) (Ivag (vad ® [vad (vad) 4

forany|x), |¢) € Ha, and|yr), |§) € Hy. Because of linearity, this map is defined
on the whole space Ertf ® Hy).

Next, we need maps that transform the two-particle state into one-particle
state. They are given by the following definition (Caledral., 2002).

Definition 2. The linear maps:
Tr.: End(Ha ® Hp) — End(H® ® Hy),
Trr: End(Ha ® Hp) — End(Ha ® HO),
Tz End(Ha ® Hp) — End((a ® H°) & (H° ® Hy)),
Tre: End(Ha ® Hp) — End((Ha ® 1) & (H° ® Hp)),
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called thdeft, right, inner, and external partial supertracespectively, act on the
endomorphisms of the forry ) (¢| ® |)¥ (¢ € End(Ha ® Hy) in the following
way

T (1¥) (x| ® 19)(€]) = (x|v)(Ivac (vad ® ) (€]), (5a)
TrR(¥) (x| @ [9)(€]) = (E10)(1¥) (x| ® [vag (vag), (5b)
Tn(w) (x| ® 1) ED) = (x19)(1¥)(vad ® |vag (£]), (5¢)
Tre(1¥) (x| ® |9)(€]) = (El¥)(Ivag (x| ® |¢)(vad). (5d)

Because these superoperators are linear, their action is defined on the whole space
End(H, ® Hp) since every element of EnH{ ® Hy) can be written as the linear
combination of the endomorphisms of the form) (x| ® |¢)(£].

We can see from (5¢) and (5d) that the internal and external partial supertraces
Tr, andTrg are nontrivial only foridentical particles, i.e., for symmetric or antisym-
metric part of End(f{ ® H°) @ (H ® H)) (notice thatin this cask, = Hp, = H),
because in the other cage|¢) and(&|y) must vanish for any), | x) € Ha and

9), 1) € Hp.

4. DISTINGUISHABLE PARTICLES

Now we consider the destruction in two-particle system of distinguishable
particles. The apparatus mentioned in Section 1 destroys the particles if the out-
comes of measurements of the observablgsand Ay, lie in the subset§2, and
Qp, of spectraA, of A, andAyp, of Ay, respectively. Leflg, be the projector onto
the subspace @f, associated witk, andIlg, be the projector onto the subspace
of Hy, associated wittf2,. Now we perform a simultaneous measurement of the
observabledlg, ® Iy and 1, ® g, (la and Iy denote the identity operators in
Ha andHy, respectively). Thus just after the measurement we have the following
possible outcomes:

e the measurement diig, ® I, and |, ® Iy, both give 0—there are no
particles to destroy and the final state is a two-particle state;

e the measurement dl,, ® Iy gives 0 and the measurementlgf® Ig,
gives 1—the particlel§” is to destroy and the final state is a one-particle
state of the particled”;

¢ the measurement &g, ® Iy gives 1 and the measurement gflg, gives
0—the particle &” is to destroy and the final state is a one-particle state of
the particle b”;

e the measurement dilg, ® |, andl,I1g, both give 1—the particlesa”
and ‘b” are to destroy and the final state is the vacuum state.
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One can easily verify the operator; ® Héh, Mg, ® Mg,, Mg, ® Mg, and
Mg, ® Mg,, wherel‘[éa = |, — Mg, andI1] o =lb— l‘IQb are projectors on mu-
tually orthogonal subspaces associated with these cases, appropriately.

Now, to destruct2,- andS2,-projected parts of the density matpxve apply
appropriately thelr, (TrR) to the Q,- (2 — 1) projected part op as well asTr
to theQ,- andQ,-projected part, and we arrive at the following definition (Caban
et al, 2002).

Definition 3. The destruction with no selectiorin the set Q of two-
particle statep € End(Ha ® Hp) of distinguishable particles is defined by the
mapDg : End(Ha ® Hp) — End(Ha ® Hp)® End(H, @ H%)® End(H° @ Hp)®
End(+° ® H°), such that

Da(p) = (Mg, ® Mg,) p (Mg, ® Mg,
+Trr [ (Mg, ® Mg,) p (Mg, ® Mg,)]
+ T [(Me, @ T, ) o (Mo, ® Mg, )]
+Tr [(Mg, ® Mg,) p (Mg, ® Mg,)]. (6)

It can be shown (Cabasat al., 2002) that the mapg, is a Kraus map.

Now, we illustrate the destruction in two-particle system of distinguishable
particles by the following examples.

Example 1. Consider an EPR pair of distinguishable qubits (Galindo and
Martin-Delgado, 2002):

1
Ut = —(|0) ® |1) £ |1) ® |0)).
W) ﬁ(|)®|> 1) ® |0))

Let us assume that,|0) = 0 andA,|1) = |1), and similarlyAp, SOA, = Ap =
{0, 1}. The destruction with no selection takes place if the state of any qubjt is
S0 Q, = Qp = {0} and, therefore[lg, = |0)(0] and g, = |0)(0|. The density
matrix for this state i = |¥*)(¥*| and

1
D(ps) = (1)1l ® lvac(vad + [vag(vad @ |1)(1]).

Example 2. Now, consider another EPR pair of distinguishable qubits (Galindo
and Marth-Delgado, 2002):

o) = 7—(|0 ®10) £ 1) ® [1)).
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As in the previous example the destruction with no selection takes place if the state
of any qubit is|0). The density matrix for this state is ngyy = |®*)(d*| and

1
D(p+) = §(|1><1| ® |1){(1] + |vag(vad ® |vag) (vad).

5. IDENTICAL PARTICLES

Now we consider the destruction in the system of two identical particles. In
this caseH, = Hp = H. The system of two identical particles is described by a
density matrix of the form (1) together with the symmetry conditions (2a) or (2b).
As in the previous case, |Elg be the projector onto the subspacé-béssociated
with @ C A. Now we perform a measurement of the symmetrized observable
Mo ® | + | ® M. The spectral decomposition of this observable is

Moe®! +1®MHe =05 ® I
+1- (Mg @ Mo+ Me®M§) +2-Me® Mg (7)
(T15 = | — Ig, as before), where

1§ ® I corresponds to the situation that there is no particle with an eigenvalue
of A belonging tog2,

M ® Mg + g ® I corresponds to the situation that there is exactly one par-
ticle with an eigenvalue of belonging to2,

[T ® Ig corresponds to the situation that there are two particles with an eigen-
value of A belonging tof.

In view of (7), just after the measurement, we have only the three possibilities:

e the measurement diip ® | + | ® I gives 0—there is no particle to
destroy and the final state is a two-particle state,

e the measurement dl, ® | + | ® I gives 1—there is exactly one par-
ticle to destroy and the final state is a one-particle state,

e the measurement dlg ® | + | ® I gives 2—there are two patrticle to
destroy and the final state is the vacuum state.

In order to destruct th&-projected part of the density matrixwe apply
the same algorithm as in the case of distinguishable particles, but now we cannot
omit Tr andTrg because their action is nontrivial. Therefore, we can formulate the
following definition (Cabaret al., 2002).

Definition 4. The destruction with no selectiom the setQ of twoparticle
state p € End(H ® H) of identical particles is defined by the mapgq:

End(H ® H) — End(H ® H) & End((H @ H°) & (H° ® H)) ® End(H° ® HY),
such that
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Da(p) = (Mg ® Mg) p (Mg ® Mg)
+Tre (Mg ® T15) p (11§ © M) ] + Tr [(TMe ® T15) o (e © T13)]
+Th [(Mg ® Tle) p (Mo ® M15)] + Tre (Mo @ M) p (Mg © To) ]
+Tr[(Mg ® Mg) p (Mo ® Mg)], ®)

where the signst and — correspond to symmetric and antisymmetric cases,
respectively.

It can be shown (Cabeet al., 2002) that this map is a Kraus map if it acts on
density matrices obeying the symmetry conditions (2a) or (2b).

Now, we illustrate the destruction in two-particle system of identical particles
by the following examples.

Example 3. Now, consider an EPR pair of identical qubits:
1
V)= —(10) ®|1) £ |1) ® |0)),
W) ﬁ(|>|)|>|))

and as previously, let us assume thad) = 0 andA |1) = |1) and the destruction
with no selection takes place if the state of any qubitOls so 2 = {0} and,

therefore Il = |0)(0]. The density matrixp,. = |¥*)(¥*| is symmetric if we

choose the sign+" and antisymmetric if we choose-" After the destruction
we get

1
D(p*) = 5(|1) ® [vag + [vag ® |1))((1] ® (vad + (vad ® (1]).

Note that in the case of identical qubits in the stdi&) (now p.. is symmetric for
both “+" and “—") after destruction we get the same state as in the Example 2.

6. CONCLUSIONS

We have given a mathematical formalism that allows one to describe the
destruction of a particle from the two-particle state in the framework of quantum
mechanics. Thisis done by means of the reduction procedure (Isham, 1@5s|.~
1951; von Neumann, 1932) associated with immediate mapping of the part of
the reduced density matrix onto vacuum density matrix and is based on the use
of supertraces. We point out that the destruction procedure can be treated as a
supplement to the von Neumannidéers measurement procedure.

The formalism introduced herein should be helpful in a description of the
processes when one has the system under time evolution after the destruction.
This may happen in the EPR type experiments (the destruction can take place in a
detector). For this reason the destruction procedure may also be helpful in quantum
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information theory. Applications of the destruction procedure to calculation of the
EPR quantum correlations will be done in the forthcoming papers.
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